Complementation of the embryo-lethal T-DNA insertion mutant of AUXIN-BINDING-PROTEIN 1 (ABP1) with abp1 point mutated versions reveals crosstalk of ABP1 and phytochromes

نویسندگان

  • Yunus Effendi
  • Noel Ferro
  • Corinna Labusch
  • Markus Geisler
  • Günther F. E. Scherer
چکیده

The function of the extracytoplasmic AUXIN-BINDING-PROTEIN1 (ABP1) is largely enigmatic. We complemented a homozygous T-DNA insertion null mutant of ABP1 in Arabidopsis thaliana Wassilewskia with three mutated and one wild-type (wt) ABP1 cDNA, all tagged C-terminally with a strepII-FLAG tag upstream the KDEL signal. Based on in silico modelling, the abp1 mutants were predicted to have altered geometries of the auxin binding pocket and calculated auxin binding energies lower than the wt. Phenotypes linked to auxin transport were compromised in these three complemented abp1 mutants. Red light effects, such as elongation of hypocotyls in constant red (R) and far-red (FR) light, in white light supplemented by FR light simulating shade, and inhibition of gravitropism by R or FR, were all compromised in the complemented lines. Using auxin- or light-induced expression of marker genes, we showed that auxin-induced expression was delayed already after 10 min, and light-induced expression within 60 min, even though TIR1/AFB or phyB are thought to act as receptors relevant for gene expression regulation. The expression of marker genes in seedlings responding to both auxin and shade showed that for both stimuli regulation of marker gene expression was altered after 10-20 min in the wild type and phyB mutant. The rapidity of expression responses provides a framework for the mechanics of functional interaction of ABP1 and phyB to trigger interwoven signalling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embryo-lethal phenotypes in early abp1 mutants are due to disruption of the neighboring BSM gene

The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described Arabidopsis T-DNA inserti...

متن کامل

Embryo - lethal phenotypes in early mutants are due to abp 1 disruption of the neighboring gene BSM

The Auxin Binding Protein1 (ABP1) has been identified based on its ability to bind auxin with high affinity and studied for a long time as a prime candidate for the extracellular auxin receptor responsible for mediating in particular the fast non-transcriptional auxin responses. However, the contradiction between the embryo-lethal phenotypes of the originally described T-DNA Arabidopsis inserti...

متن کامل

Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development.

Auxin binding protein 1 (ABP1) has been studied for decades. It has been suggested that ABP1 functions as an auxin receptor and has an essential role in many developmental processes. Here we present our unexpected findings that ABP1 is neither required for auxin signaling nor necessary for plant development under normal growth conditions. We used our ribozyme-based CRISPR technology to generate...

متن کامل

Genome Sequencing of Arabidopsis abp1-5 Reveals Second-Site Mutations That May Affect Phenotypes.

Auxin regulates numerous aspects of plant growth and development. For many years, investigating roles for AUXIN BINDING PROTEIN1 (ABP1) in auxin response was impeded by the reported embryo lethality of mutants defective in ABP1. However, identification of a viable Arabidopsis thaliana TILLING mutant defective in the ABP1 auxin binding pocket (abp1-5) allowed inroads into understanding ABP1 func...

متن کامل

AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses

The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015